

#### ASSESSMENT OF LUMBAR SPINE POSTURE DURING SITTING ON A DYNAMIC SITTING DEVICE (FLEXCHAIR®)

## Does the registration of the device match the actual low back alignment?



| door   | Pieter-Jan Flamaing<br>Esther Groenen                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| o.l.v. | Prof. Dr. W. Dankaerts, promotor<br>Prof. Dr. M. Granitzer, copromotor<br>Prof. Dr. R. Meesen, copromotor<br>Prof. Dr. L. Van Etten, copromotor |
|        |                                                                                                                                                 |





# CONTENTS

## 1. INTRODUCTION

## 2. METHODS

## 3. RESULTS

## 4. DISCUSSION

## 5. CONCLUSION



#### Introduction





•Today' s mechanized, technologically oriented conditions allow and even promote an unprecedentedly sedentary lifestyle -Many important health problems are affected by this imbalance

Eaton (2003); Callaghan & McGill (2001)







- Prolonged sitting is frequently associated with the aggravation of LBP
- Major aggravating activity for LBP

Dankaerts et al (2006)





### Introduction Spine posture and biomechanical loading



- Proposed negative effects of prolonged sitting include:
  - Compromised disc nutrition
  - Static loading of spinal structures secondary to a lack of spinal movement

Krämer (1977)

- Slumped sitting postures cause:
  - Increased disc pressure and tension on posterior passive structures



Callaghan & McGill (2001)



#### Introduction Spine posture and biomechanical loading



 Sitting: higher disc pressure than standing or lying

Nachemson (1970)







- Recent findings show:
  - Proof of often similar IDP in standing and upright sitting postures
  - Axial compression in sitting, measured in vitro, is unlikely to pose a threat to *non-degenerate discs*
  - If sitting is a greater threat for development of LBP than standing, the mechanism is unlikely to be raised IDP

Claus et al (2007)





- Def. 'neutral zone' = part of physiological intervertebral motion
  - Measured from the neutral position
  - Within which the spinal motion is produced with a minimal internal resistance
  - Zone of high flexibility or laxity

#### Panjabi (1992)



# Introduction Neutral spine or lumbo-pelvic upright sitting





P



- Most commenly advocated 'ideal sitting posture' = neutral spine or lumbo-pelvic upright sitting
  - Def. ideal sitting posture:
    - \* Anterior rotation of pelvis
    - \* Lumbar spine in a 'neutral' lordosis
    - \* Relaxation of thorax

O'Sullivan et al (2002)



#### Introduction Neutral spine or lumbo-pelvic upright sitting





(A) Thoracic upright sitting. (B) Slump sitting. (C) Lumbo-pelvic upright sitting

O'Sullivan et al (2006)





 In sitting, spine posture highly influences patterns of trunk muscles activity

O' Sullivan et al (2002); Dankaerts et al (2006)







### CLBP patients: sit closer to end range

Dankaerts et al (2006)

- Extension Pattern:
  - Sit more hyperlordotic
  - Demonstrate increased muscle activity of sLM and IO vs controls
- Flexion Pattern:
  - Adopt a more slouched posture
  - Demonstrate decreased muscle acitivity of sLM and IO vs controls







 Loss of proprioceptive control has been associated with LBP populations

Gill & Callaghan (1998) Koumantakis et al (2002) O'Sullivan et al (2003)







- Patients with poor sitting posture lack control over lumbo-pelvic region in sitting
  - Ex: CLBP patients with a flexion pattern disorder, while seated: decreased repositioning sense compared to no-LBP controls

O'Sullivan et al (2003)







- Problems associated with sitting and LBP
  - Sitting = common aggravating factor
  - LBP patients adopt a more end range posture
  - Lack of repositioning sense

 $\rightarrow$  Hypothesis: patients could benefit from biofeedback







• During sitting on an unstable device, subjects have opportunity to move pelvis and lumbar spine. This allows adjustments to be made and stimulates a more *dynamic* way of sitting.





- Stimulation provided by an unstable surface facilitates activation of spinal stabilizing muscles around a neutral spine position by continuous fine postural adjustments (Farell et al 2000)
  - Examples:
    - \* Stability ball

(Gregory et al 2006, McGill et al 2006)

\* Saddle chair

(Gadge & Innes 2007)

\* Sitfit<sup>®</sup>

(O'Sullivan et al 2006)







• Dynamic sitting

Biofeedback

combined with









## Flexchair<sup>®</sup> (FC<sup>®</sup>)

•Dynamic/Active Sitting device

promotes 'neutral sitting'?

Registration

online/longitudinal

**Synchronisation** 

• Low back alignment = FC<sup>®</sup> registration?

### •Training device

intrinsic lumbar muscles (proprioception)















- Second aim: to express actual range of motion at lumbar spine (L1-S2)
  - ROM Flexchair<sup>®</sup> vs ROM standing vs sitting on a flat surface





# CONTENTS

1. INTRODUCTION

## 2. METHODS

## 3. RESULTS

## 4. DISCUSSION

### 5. CONCLUSION







- Fifteen healthy (no-LBP) subjects
- Exclusion criteria:
  - LBP over the last two years
  - Required medication and/or consulted with a health professional
  - Sick leave because of LBP
  - Pregnant
  - BMI >28 kg/m<sup>2</sup>
  - Recent pelvic or abdominal surgery
  - Pain in the test postures
  - Spinal disorder



### **Methods** Dynamic Sitting Device (Flexchair®)



 Flexchair<sup>®</sup> accelerometer



- Three-dimensional cant mechanism
  - Suede saddle
  - Two axis









- Anterior/posterior low back alignment
  - A twin axis flexible electrogoniometer (EG)
     (Biometrics Ltd, Cwmfelinfach, Gwent, UK)
  - Centre of endblocks were placed on spinous processes of L1 and S2





### **Methods** Experimental Protocol: Procedure 1







### **Methods** Experimental Protocol: Procedure 2





phl.be

### Methods Experimental Protocol: Procedure 3





phi.be



# CONTENTS

- 1. INTRODUCTION
- 2. METHODS
- 3. RESULTS
- 4. DISCUSSION
- 5. CONCLUSION







• Correlation of r = 0.569









Customized software

– Placing both graphs over each other
– High correlation coefficients (min. 0.83, max. 0.97)



#### **Results** Analysis 1: Correlation of FC<sup>®</sup> and EG





Example of applying customized software **Red graph = Flexchair®** W

#### White graph= Electrogoniometer

phi.be

# **Results**Analysis 1: Correlation of FC<sup>®</sup> and EG





Correlation coefficient of 0.97

Example of applying customized software





Group







#### **ROM Extension**









#### **ROM Flexion**







# CONTENTS

- 1. INTRODUCTION
- 2. METHODS
- 3. RESULTS

## 4. **DISCUSSION**

## 5. CONCLUSION







• Supporting evidence: registration of dynamic sitting device matches actual low back alignment

Moderate correlation (r=0.57)

 Software: possible to outline graphics of EG and FC<sup>®</sup> onto each other

High correlation (r= min. 0.83, max. 0.97)







• Analysis was justified:

Visual inspection: delay in movement of chair vs movement of low back during 2<sup>nd</sup> phase

- \* Lower back moves first and Flexchair<sup>®</sup> shows inertion to movement of lower back
- \* Flexchair<sup>®</sup>: moving against gravity  $\rightarrow$  more difficult





- ROM in standing is larger then in sitting on a flat surface and on Flexchair<sup>®</sup>, because of fixation of pelvis
- Dynamic sitting device allows a larger mobility in the lower back compared to a normal, flat sitting device
- Use of neutral zone from calibration: people with a lack of repositioning sense could have had false flexion/extension ratios







### • Limitations:

- Use of an external device to measure movement
- Limitation of electrogoniometer (length of coil)
- Further research :
  - Use of FC<sup>®</sup> for evaluation and rehabilitation of specific low back muscle performance characteristic (e.g.: proprioception) in patients with LBP
  - Use of feedback mechanism during prolonged sitting and its influence on LBP
  - Development of a marker to match both data on a more accurate starting point





# CONTENTS

- 1. INTRODUCTION
- 2. METHODS
- 3. RESULTS
- 4. DISCUSSION
- 5. CONCLUSION







- 1<sup>st</sup> time evidence:
  - Moderate to high correlation between registration of Flexchair<sup>®</sup> during a dynamic sitting task in sagittal plane and actual low back alignment
  - No significant difference between total ROM while sitting on a flat surface and sitting on FC<sup>®</sup> (significant difference in extension)



#### Conclusion



 Future work investigating Flexchair<sup>®</sup> as a novel dynamic sitting and training device in a more clinical setting is justified

















www.flexchairmovement.nl info@flexchairmovement.nl







